
PARIS CALL
SOFTWARE SOURCE CODE
AS HERITAGE FOR SUSTAINABLE DEVELOPMENT

Memory of
the World

United Nations
Educational, Scientific and

Cultural Organization

The designations employed and the presentation of material
throughout this publication do not imply the expression of any
opinion whatsoever on the part of UNESCO concerning the legal
status of any country, territory, city or area or of its authorities,
or concerning the delimitation of its frontiers or boundaries.

The ideas and opinions expressed in this publication are those
of the authors; they are not necessarily those of UNESCO and do
not commit the Organization.

License: IGO CC-BY 4.0

CLD 2727_18 CI-2019/WS/3

Table of Contents

Foreword.   1

Paris Call  .   2

Signatories  .   4

Report from the Expert Group on
Software Source Code as Heritage
for sustainable development    6

1Foreword

FOREWORD

An eminent group of international experts met upon
invitation of UNESCO and Inria on 6 and 7 November
2018 at UNESCO’s Headquarters to discuss software
preservation. Indeed, it is increasingly becoming a
significant means for capitalizing on the knowledge
built over humankind’s recent history in order to foster
innovation and advance our understanding of ourselves
and of our environment.

In a world where digital technology has become
for many an essential tool for social existence,
communication, creation, sharing, and is increasingly
indispensable for accessing public services, the role
of software development is still largely underrated,
as is the recognition of software source code as an
intellectual effort and as the receptacle and expression
of part of our knowledge.

That is why it is crucial to work towards preserving the
technological and scientific knowledge embodied in
software source code. This objective is at the core of the
cooperation between UNESCO and Inria, which started
in 2017, in line with UNESCO’s concept of inclusive
knowledge societies based on four pillars: freedom
of expression, universal access to information and
knowledge, respect for cultural and linguistic diversity,
and quality education for all.

The expert meeting provided a unique platform to
engage with the eminent experts, practitioners,
policymakers and activists representing different
disciplinary and professional worlds. This includes
communities engaged in the preservation, archiving,
and dissemination of documentary heritage, particularly
in the context of UNESCO’s Memory of the World
Programme; the technical community, ranging from
research to computer science education; and activists

calling for an open and free environment for cultural
expression and technological innovation.

Emerging from this meeting is the Paris Call,
representing an important first step towards a
coordinated response to the challenges that have been
identified. These challenges include the importance
of raising awareness among decision-makers, and
the recognition of software creators as well as of
the contribution of women and minorities to digital
innovation and software. The Call goes further to argue
for greater access to software source code in order to
ensure that citizens, and young people in particular, are
empowered with sufficient digital skills and literacy to
fully participate in today’s digital society.

Accordingly, the annexed report highlights the
importance of preserving software in general, and
software source code in particular, as important levers
for sustainable development.

These efforts, however, are just starting. It is our
collective responsibility and we all must ensure that
the knowledge accumulated – and constantly being
generated – is not lost. This focus on preservation
enables us all to embrace software source code as part
of the heritage of our knowledge societies. The Paris
Call thus becomes a strong basis to imagine and build
new actions around the preservation of the code, and
sustain Free and Open Source Software communities
through the exchange of the knowledge now archived as
part of the Software Heritage Initiative.

Moez Chakchouk
Assistant Director-General

for Communication and Information
UNESCO

2 Paris Call ‒ Software Source Code as Heritage for Sustainable Development

PARIS CALL
“Software Source Code as Heritage for Sustainable Development”
Part of our Heritage, Pillar of our Present, Enabler of our Future

Considering the results of our consultations as reflected
in the Annexed report,
We, the participants at the UNESCO/Inria Expert Meeting,
held in Paris, France, 6-7 November, 2018,

1.	 Considering software source code as a key component
of human creativity, sustainable development, society
and culture;

2.	 Recalling the 2003 Charter on the Preservation of Digital
Heritage;

3.	 Recalling further the 2011 Moscow Declaration on Digital
Information Preservation;

4.	 Recalling also the 2012 UNESCO/University of British
Columbia (UBC) Vancouver Declaration (on Memory of the
World in the context of digitization and preservation);

5.	 Recalling also the 2015 Recommendation Concerning the
Preservation of, and Access to, Documentary Heritage,
Including in Digital Form, that recognises the value of
open source software and open standards for long term
preservation;

6.	 Emphasising the importance of software source code for
a transparent society;

7.	 Emphasising also that software source code is an
essential pillar of education and research;

8.	 Emphasising also the centrality of software to modern
commerce and industry especially as a medium for
innovation and economic development;

9.	 Recognising the growing importance of free and open
source software, with humankind constantly creating an
unprecedented software commons;

10.	Recognising also that the preservation and sharing of
software source code is threatened by a lack of awareness
of its nature and role as well as a lack of preservation
infrastructure;

11.	Welcoming the United Nations (UN) 2030 Agenda for
Sustainable Development1, particularly its focus on
strengthening “efforts to protect and safeguard the world’s
cultural […] heritage” as well as on ensuring public access
to information and protecting fundamental freedoms;

12.	Welcoming also the Memorandum of Understanding
between UNESCO and Inria as an important lever in
supporting the identification, preservation and promotion
of software source code as digital heritage for Sustainable
Development.

We therefore:

¼¼ Call on each UNESCO Member State to:
13.	Recognise software source code as a precious asset

of humankind, intersecting with human creativity,
development, society and culture;

14.	Recognise software source code as a fundamental
enabler in all aspects of human endeavour;

15.	Recognise software source code as a fundamental
research document on a par with scholarly articles and
research data;

16.	Recognise that the source code of software used for
the implementation of laws and regulations defines
the experience of the law by citizens;

17.	Create an enabling legal, policy and institutional
environment where software source code can flourish
as an integral part of knowledge societies;

18.	Integrate the scientific fundamentals of computing/
informatics within general education for all citizens;

19.	 Support the development of shared infrastructures to
collect, preserve and make available software source code;

20.	Establish an open and international research
infrastructural framework for the large scale analysis
and improvement of the quality, safety and security of the
software commons;

3Paris Call

21.	Ensure necessary exceptions to copyright and limitations
on intermediary liability related to software for archival,
preservation, accessibility, education and research
purposes;

22.	Enable effective independent auditing of software source
code used to make decisions that may affect fundamental
rights of human beings and where possible ensure it is
made available under an open source license;

23.	Implement, with support from UNESCO’s Memory of the
World Programme, the 2015 Recommendation concerning
the Preservation of, and Access to, Documentary Heritage,
including in Digital Form, inviting inter-alia Member
States to facilitate access to proprietary codes, keys and
unlocked versions of technology on a nonprofit basis.

¼¼ Call on UNESCO and Inria to:
24.	 Strengthen UNESCO’s support for the Software Heritage

initiative, as a way of enhancing awareness of the importance
of preserving and providing access to source code;

25.	Forge more strategic partnerships in order to create
greater recognition of software development activity as
science and research, particularly by demonstrating how
software source code can be appropriated as a research
product worthy of preservation, while at the same time
promoting its recognition as a valid field of both applied
and academic enquiry, with reproducible or verifiable
research results;

26.	Support efforts for the development of an open Global
Software Registry, which will help all stakeholders to
recognize and enable software reuse as an important
part of all modern software developments by providing
a universal catalogue that will index all available software
components, with the metadata needed to properly locate
and reuse them.

¼¼ Call on software developers, memory institutions, the
business sector, academia and civil society, within their
competency, to:

27.	Recognise that software is the result of a significant
part of the intellectual efforts of humankind over recent
decades, and it is an important part of our cultural and
industrial heritage;

28.	Support efforts to gather and preserve the artifacts and
narratives of the history of computing, while the earlier
creators are still alive;

29.	 Promote software development as a valuable research
activity, and research software as a key enabler for Open
Science/Open Research, sharing good practices and
recognising in the careers of academics their contributions
to high quality software development, in all their forms;

30.	Recognize the importance of contributions by people of all
genders from all over the world to the software commons,
supporting a diverse and inclusive environment for all
aspects of software development and curation;

31.	Educating decision makers on the specificities of
software, and software source code in particular, raising
awareness about the threats to the software commons
and the importance to protect it;

32.	Encourage all stakeholders to develop a common system
of cataloguing to allow for easy identification and retrieval
of software source code, even across the many platforms
and infrastructures used to develop and/or distribute it;

33.	Support stakeholders in developing a universal archive,
as part of a broad effort at digital preservation, that will
ensure persistence of and universal access to software
source code;

34.	Encourage multidisciplinary activity in the field of
software preservation, and in particular collaboration with
the humanities and social sciences whose contributions
are essential to study the history of technology;

35.	Adapt processes, workflows and licensing schemas in
the software industry to ease the transition of future
proprietary software source code into the software
commons once it is no longer commercially viable;

36.	Foster international collaboration to build a common
framework for software preservation and access, and
mutualise resources, in order to avoid the dispersion of
efforts;

37.	Promote the recording of the activity of software
developers, captured as documentary heritage either
in analogue or digital form, which are suitable for
preservation in their own right and ensure that they are
linked with the source code.

38.	Support all stakeholders in developing the understanding
that software source code is intertwined more and more
with the fabric of our society, hence the utmost care needs
to be used during its development process to manage its
potential consequences on society and people.

Adopted on 7 November 2018, Paris, France

4 Paris Call ‒ Software Source Code as Heritage for Sustainable Development

SIGNATORIES

Abramatic, Jean François Inria Emeritus Senior Scientist

Albert, Kendra Software Preservation Network Legal Advisor

Alberts, Gerard University of Amsterdam Historian

Bradley, Kevin Australian Collection and Reader
Services, National Library of Australia Assistant Director-General

Buckley, Robert PERSIST Policy Working Group Chair

Chue Hong, Neil Software Sustainability Institute,
University of Edinburgh Director

Clipsham, David The National Archives (UK) Digital Preservation and Archiving
Technical Architect

Cochrane, Euan Yale University Digital Preservation Manager

Di Cosmo, Roberto Software Heritage, Inria Director

Duplouy, Laurent Multimedia collection, BNF Curator

Gharsallah, Mehdi French Ministry of Higher Education,
Research and Innovation

Conseiller stratégique pour le
numérique

Greenberg, Joshua M. Alfred P. Sloan Foundation Program Director, Digital Information
Technology

Guerry, Bastien Free Software at Etalab (France) Head

Hinchey, Mike International Federation for Information
Processing President

Inverardi, Paola University of L’Aquila (Italy) Rector

Issarny, Valerie ACM-Europe and Inria Computer scientist

5Signatories

Madhavan Pillai, Arun ICFOSS, Government of Kerala, India Program Head

Marzano, Flavia Roma Semplice Councilor

Miura, Grégory Bordeaux Montaigne University Director of the Shared Documentation
Service

Moreau, Patrick The French National Centre for
Scientific Research Industrial Partnership Manager

Nardelli, Enrico Informatics Europe President

O’Donohue, Pearse Future Networks Team in DG CONNECT
at the European Commission Director

Osuna Alarcón, Maria R. University of Salamanca Senior Lecturer

Palm, Jonas SCOT, Memory of the World Programme Chair

Perelmuter, Tanya Software Heritage Foundation Strategic Partnership Director

Phipps, Simon Open Source Initiative President

Piana, Carlo Array Lawyer

Rugier, Nicolas Inria Researcher

Sassi, Melissa IEEE Digital Skills Working Group Chair

Schüller, Dietrich Austrian National Committee Chair

Seles, Anthea International Council on Archives (ICA) Secretary-General

Shustek, Len Computer History Museum Chairman

Smith, Arfon Space Telescope Science Institute Head of the data science mission office

Webb, Mary International Federation for Information
Processing TC3 member

Wheatley, Paul Digital Preservation Coalition Head of Research and Practice

Wyber, Stephen IFLA IEEE Digital Skills

6 Paris Call ‒ Software Source Code as Heritage for Sustainable Development

REPORT FROM THE EXPERT GROUP ON
SOFTWARE SOURCE CODE AS HERITAGE
FOR SUSTAINABLE DEVELOPMENT
UNESCO Headquarters, 6-7 November 2018

1.	 Introduction
Software embodies a vast part of our knowledge and
cultural heritage. It mediates access to all digital
information, supports and embodies new forms of social
and political organisations, powers our industries and
innovation, and is a pillar of research. It binds together the
personal, social, industrial, and digital aspects1 of our lives.

Software is an essential mediator to access all digital
information and hence a key component to fulfill the
human right of access to information.2

Software embodies the procedures by which the citizen
engages with the state, through which the citizen and the
market interact and in which citizens communicate with
each other and enjoy cultural and leisure pursuits. Our
ability to see society in action and guarantee the democracy
that sustains it is increasingly dependent on our ability to
review the software by which it is enabled at every level.

Software both runs factories and is itself a creative
industry. Industry increasingly and sometimes completely
relies upon custom built software for logistics, factory
production, financial and human resources management
and education. The advent of software has led to
increased ability to innovate. At the same time, cultural
products, such as video games, artistic works and
modern cinema are nowadays created with sophisticated
software tools. These works are then preserved for
later access by libraries, archives and museums using
software systems.

Software is a fundamental pillar of modern research3,
across all fields and disciplines. Ensuring transfer of
knowledge and understanding of software programs
is critical for both computing experts and for users
of computing techniques in other areas of research,
education, and applications. That adds to the concerns
of the Memory of the World Programme to protect
our digital heritage from obsolescence and make it
accessible to the future generations.

Looking more closely, though, the actual knowledge
embedded in software is not just contained in executable
binaries, which are designed to run on specific hardware
and software platforms and are almost incomprehensible
to human beings4. Rather, knowledge is contained also
in software source code which is, as eloquently stated in
the very well crafted definition found in the GNU General
Public License,5 “the preferred form [of a program] for
making modifications to it [as a developer]”.

Software source code is the result of a significant part
of the intellectual creative efforts of humankind over the
last decades, and is becoming an important part of our
cultural heritage. Our ability to use, understand, adapt,
correct, and evolve the devices on which our lives have
come to depend relies on our ability to access, understand,
adapt, correct, and evolve the software that controls them.

Thus, preserving software source code and making it
widely available is vital to human cultural heritage and
key to sustainable development.

7Report from the expert group on Software Source Code as Heritage for sustainable development

2.	 Software source code: a precious
asset of humankind

Software source code is a unique form of knowledge
which is designed to be understood by a human being,
the developer and, at the same time, easily converted
into machine executable form.

2.1	 A key component of human creativity,
development, society and culture

Authoritative voices have spoken eloquently of the
importance of source code. As far back as the 1980’s
Harold Abelson wrote “Programs must be written for
humans to read”,6 and one of the founding fathers of
computer science, Donald Knuth, wrote in one of his
essays “Instead of imagining that our main task is to
instruct a computer what to do, let us concentrate
rather on explaining to human beings what we want a
computer to do”7.

As a digital object, software source code is subject to
a specific workflow: it is routinely updated to cater to
new needs and evolving contexts. In order to understand
software source code, it is essential to have access to its
entire development history. Thus, quite differently from
other forms of knowledge, we have grown accustomed
to using version control systems in order to track source
code development and provide precious insight about its
evolution. As Len Shustek puts it, “Source code provides
a view into the mind of the designer”.8

Software source code is now a relevant part of our
information commons—the software commons,9 i.e.,
the body of software that is widely available and can be
reused and modified with minimal restrictions10. The
rise of Free/Open Source Software11 (FOSS) over the past
decades has contributed enormously to this commons,
opening up unprecedented collaboration opportunities,
and fostering source code accessibility though its
founding principles.

2.2	 A needed prerequisite in many fields of activity
Software source code is not only an important part of our
cultural heritage. Having access to the source code of a
running piece of software is also a necessary prerequisite
in many fields of human activity, in particular:

¼¼ Software quality for society
Software quality, safety and security are of paramount
importance today. Software is increasingly a central part of
complex systems that lie at the heart of our transportation,
energy, media, communication and financial infrastructure,
as well as health care systems and personal medical
devices, some of which may be embedded in our bodies, like
pacemakers. Ensuring quality, safety and security of these
systems relies on our ability to ensure quality, safety and
security of all the software components they are built upon.12

Since many modern systems are created by extensively
reusing pre-existing building blocks, often available as
FOSS, access to the source code of these building blocks is
essential for the shared efforts to improve their quality, and
hence the quality of the software as a whole.

¼¼ Accountability of public administration and powers
Public administrations use software to collect and process
public information about the domain they administer
and personal information about their citizens. Along the
lines of the principles set forth in the Open Government
Partnership13, public administrations need to make publicly
and durably available the source code of the software they
use, in order to be held accountable of their operations.

¼¼ Transparency of automated decision making
Many decisions that have a direct impact on human beings
and society are now taken automatically by computer
systems14, raising deep concerns and high expectations
about the accountability and transparency of these
decisions15,16. Ready access to the source code of the
software involved in automated processes is one of the
prerequisites to ensure transparency and accountability.17

8 Paris Call ‒ Software Source Code as Heritage for Sustainable Development

¼¼ Reproducibility of research
Scientific results are essential for the progress and
evolution of humankind. They increase our knowledge,
enable industrial evolution, and inform public policies.
Most modern scientific results rely on software tools18.
Availability of the source code of these software tools
is one of the prerequisites to ensure that results can
be reproduced19, understood and trusted. Ensuring
transparency of the scientific process is essential as it
eases the acceptance of research results.

2.3	 An essential pillar of education and research
We acknowledge the existing effort to identify and
address the digital divide, in particular between those
having access to ICT and those that lack it20. Here we
go one step forward, and remark that even among
those that have full access to ICT, a second divide is
emerging, impacting the potential abilities of the citizens
to fully participate in the digital society. This is a divide
between ‘digitally savvy’ who know not only how to
use, but also how to develop and adapt software tools,
and those who are primarily consumers of software
technology developed by others. This widening gap is
especially concerning, given the increasing complexity
of the technology that is broadly deployed, like artificial
intelligence (AI) systems.

In order to reduce this divide, a general formal and
informal education in the fundamentals of computer
science/informatics, including computer programming,
is needed21,22. In the years to come, basic literacies like
reading, writing and numeracy, that everyone should
master in childhood, will be joined by the fundamentals
of computer science and informatics. To support this
effort, several aspects need to be taken into account.

Physical libraries are essential to help people learn to
read, but also support advanced studies of literature; by
analogy, curated collections of source code can be used
to teach basic programming skills and can also inspire
deeper learning of the fundamentals of computer science.

¼¼ Students should be provided with authentic
experiences in software development as well as an
understanding of the design and implementation
process, including its underpinnings in algorithms
and logic.

¼¼ It can be valuable to record narratives and discussions
among designers, who played a fundamental role in
the creation of modern technology.

¼¼ Educating all citizens, but especially computer
science and informatics students about how to make
ethical choices about technological use.

For all these reasons, software deserves special care
and attention. We need to ensure that the importance of
software is recognized and that the software source code
is properly preserved and made available to the future
generations. We must build the necessary competencies,
infrastructures and processes to sustain it and improve it
over time23.

3.	 �Threats to software source code
preservation and sharing

Software source code is a precious asset whose study
and preservation is currently endangered: there is
insufficient understanding of fundamental issues like
the nature of software, and a lack of coherent technical
and economic strategies, as well as significant barriers,
both legal and logistical, to preserving and sustaining
the knowledge embedded in software. Managing these
threats requires a concerted effort. In some instances
a societal change is needed, in others appropriate
infrastructures will have to be built.

3.1	 Insufficient awareness among decision makers
The first and the foremost threat to the software
commons is a lack of understanding of the nature and
inner workings of software and software source code by
decision makers.

9Report from the expert group on Software Source Code as Heritage for sustainable development

Generally, neither decision makers nor the general
public are aware that software artifacts are radically
different from any previous man-made creations. While
these have been just amplifications of physical and
sensory capabilities of people, software source code is
a new form and representation of human knowledge. It
is «actionable knowledge», that is ready to be executed
on the appropriate hardware and that can dynamically
interact with the world. Software source code is thus
an unprecedented mechanization of human knowledge.
Without a thorough comprehension of this concept the
role of software in society cannot be really understood.

For example, the recent copyright reform in Europe,
despite being explicitly intended to regulate multimedia
and publishing industries, has been articulated in a
way that is likely to impact the software development
ecosystem presenting challenges to its very existence24.
The debate that ensued has made it evident that few
policymakers, or even their advisors, understand
the nature of software, and that there is a need for a
consistent and compelling voice to advocate for the
interests of the software commons in the political arena.

At the same time, some decision makers have shown
that they understand the importance of computing
generally and source code specifically. In the United
Kingdom, a computing programme of study has been
incorporated in the national curriculum25. In the United
States, both President Obama and President Trump have
proposed more funding for computer science education.26
UNESCO supports the Software Heritage initiative. Much
more is to be done.

3.2	 Specific legal challenges
Insufficient awareness among decision makers often
produces accidental hurdles to the preservation of
software source code and access to code. But beyond
these unintentional challenges, many countries have legal
rules that obstruct the passage of software into preserved
heritage. Such regimes have arisen both from the

implementation of treaty- and WTO-originated obligations
and from the demands of specific commercial sectors
feeling threatened by the emerging digital society.

Anti-circumvention provisions in many countries make
it difficult to extract software source code without legal
risk, and narrow specific copyright exemptions for
preservation that ignore software can make it difficult to
archive source code in countries without flexible fair use/
fair dealing doctrines. Such lack of legal provisions can
dissuade risk-averse preservation institutions from even
attempting to save source code.27

Special text and data mining rights may prevent or
hamper large scale automated analysis of, and machine
learning on, the source code corpus, which are already
being used by practitioners and have shown that they are
necessary to improve software quality, for the benefit of
all of society.

3.3	 Lack of recognition for software creators
Along with the insufficient understanding of software
comes a widespread lack of recognition of the software
development activity in general.

Software development is a human activity, involving
a broad range of creators, ranging from software
developers to system architects, from engineers to
scientists. The authors of software systems deserve
credit for their creation, much like the authors of a book
or a song do.

But source code is hidden from the view of most software
users, making it more difficult for the non technically savvy
to recognise this value. And when software systems grow
complex, the number of contributors grows too, making it
difficult even for the technically savvy to give credit.

And yet, recognising the value and importance of the
contributors, not only of the developers, but also of the
creators that design the algorithms and the architecture
behind the code, is important, as we need to attract the best
minds to develop the software infrastructure of our society.

10 Paris Call ‒ Software Source Code as Heritage for Sustainable Development

We are particularly worried about the impact of the lack
of recognition in research. Software must be recognised
as a research product, and software development
as a research activity in academic evaluations and
assessments. For example:

¼¼ Software as a research product
researchers, funders, publishers and institutions have
recognized the need for preserving software associated with
research data, but there are very few notable incentives, and
practically no standards and processes for the collection and
preservation of research software. Consequently, a large
part of scientific results cannot be reproduced nor verified,
due to the unavailability of the software artifacts that were
instrumental in obtaining them.

¼¼ Software development as a research activity
in many countries, software development is not taken
into account when evaluating and promoting academics;
as a consequence, there is less of an incentive for
researchers to engage in the development and sharing of
sophisticated software systems, thus society is depriving
itself of significant contributions from researchers to the
evolution of software development and technologies.

3.4	 Lack of recognition for women and
underrepresented communities

In the history of computing, women like Grace Hopper,
Margaret Hamilton or Henriette Avram have made
important contributions, and yet there is still a significant
lack of recognition of the importance of women. They
were often hidden figures in the history of the digital
revolution.28 This has serious consequences: role
models are important in attracting new generations to
computing, and to nurture an environment where all
genders are welcome. As such, women’s contributions
should be respected and recognised.

Gender is, of course, not the only reason why certain
contributions have been underappreciated. People from
many types of groups traditionally underrepresented
in computing, from geographic minorities to people

with disabilities have made positive change in the world
through computing. For example, in Sub-Saharan
Africa despite limited resources and infrastructure,
there have been innovative approaches to enable citizen
engagement (e.g. Ushahidi)29 or allow the unbanked30
in these regions to easily save and transfer money. A
holistic approach to sharing and preserving software
source code allows recognition of these advances as
well as those that are more traditionally accounted for in
computing history.

3.5	 Lack of incentives to release (legacy) source code
Managing the life-cycle of software products is a
complex and costly process, and there is little incentive
today to plan for the proper release of the source
code of non-public and proprietary software for
example when it is no longer commercially viable. As
a consequence, recovering important technological
milestones of the history of computing may end up
requiring a huge amount of effort: the recovery of
the source code of MS-DOS, Eudora or the legendary
Xerox Alto are the result of long term dedication to
overcoming both technical and legal hurdles.

Source code of legacy and contemporary software
should be considered part of the world’s heritage
and is essential for education on best practices and
reflection on the evolution and history of the computing
profession. A concerted effort to collect, document, and
make publicly available the source code of software is
important to ensure the ability to modify, redesign and
reproduce software of similar functionality in the future.

But these after-the-fact efforts may not be enough.
The release of previously private source code by a
commercial entity can be a substantial undertaking.
It entails legal due diligence including identification of
authorship and ownership, checking for disclosure of
trade secrets including from suppliers, checking for
trademark infringements, checking for patent coverage
and much more. Without incentives of comparable value,

11Report from the expert group on Software Source Code as Heritage for sustainable development

for-profit entities are unlikely to release legacy source
code, especially code that has been “orphaned” by
corporate mergers and acquisitions. Suitable incentives
might include tax credits for the cost of the work involved
and partially for the value of the code disclosed.

3.6	 Lack of an universal catalog
Source code is spread around a variety of platforms and
infrastructures that we use to develop and/or distribute
it, and software projects often migrate from one to
another. Millions of projects are developed on publicly
accessible code hosting platforms, such as GitHub, GitLab.
com, SourceForge, Bitbucket, etc., not to mention the
myriad of institutional or community “forges” scattered
across the globe, or developers simply offering source
code downloads from their web pages. Projects tend to
move between code hosting places during their lifetime,
following current trends or the changing needs and habits
of their developer communities. And the same source
code can be copied in different places for the purpose of
distributing it. As a consequence, today it is very difficult to
explore the software commons as a whole.

And unlike what happens for books, music or other
parts of our cultural heritage, we do not have a clearly
defined way of naming, referencing31 and citing32 software
projects, especially modern software systems developed
collaboratively.

We lack a universal, comprehensive catalog of all the source
code. This makes it more difficult to preserve or provide
access to historically important software source code.

3.7	 Lack of an universal repository
As with all digital information, software source code
can be deleted, corrupted or misplaced. Developers
have long relied on code hosting platforms to take care
of their code, and keep track of all the versions of its
development history.

While these platforms are indeed tools to enable
collaboration and record changes, none of them offers

any long term access guarantees: digital content stored
there can be altered or deleted over time. In recent years
we have seen major code hosting platforms shut down33,
endangering hundreds of thousands of publicly available
software projects at once.

Long term preservation cannot be assumed by entities
that do not make it a stated priority: preservation may
be a side effect of other missions, but non-preservation
focused institutions have other priorities that in the long
term usually interfere with serving as a comprehensive
repository.

We lack a universal, comprehensive and long-term
repository that is dedicated to ensuring that if source
code disappears from a given code hosting platform, or
if the platform itself disappears altogether, the code will
not be lost forever.

3.8	 Lack of large scale open research infrastructure
With the growing relevance of software, it is increasingly
more important to provide the means to improve its
quality, safety, and security. This requires access to the
full corresponding source code.

Modern advances in scientific research, in artificial
intelligence, big data, static analysis, and many others
areas, could be used to analyse the whole body of publicly
available source code, finding errors, and fixing them,
providing recommendations and speeding up innovation
in many ways if we only had a place where all information
about software projects, their public source code, and
their development history is made available in a uniform
data model. Some building blocks of this infrastructure
are starting to emerge: Software Heritage provides a
long term archive that offers a uniform representation
of software source code, and its development history,
across all code hosting platforms and version control
systems34; various projects keep track of the activity
on specific code hosting platforms, like GitHub35 or
SourceForge 36; others record developers exchanges on
specific platforms like StackOverflow or mailing lists.37

12 Paris Call ‒ Software Source Code as Heritage for Sustainable Development

We need to blend all these efforts into a “very large
telescope” of source code—in the spirit of the great
mutualized research infrastructures such as the Very
Large Telescope in the Atacama Desert or the Large
Hadron Collider in Geneva; we need to make it available
to developers, engineers, research bodies and industries
in order to improve the software on the quality of which
our society depends.

3.9	 A clear and present danger: losing the earlier
creators

Unlike many other scientific and technical disciplines,
software is very young: the first real programs were
written little more than half a century ago. Many of the
minds that laid the foundations of the modern digital
revolution are still alive, and willing to contribute their
knowledge and their personal collections of software
source code to build the history of software.

This is a unique opportunity for collecting our cultural
heritage, and keeping track of the exceptional history of
software technology and computer science38.

Taking action today is more urgent than ever, as we have
only a few years left: every year that goes by, we see
some of the important figures in this landscape passing
away; and the physical media on which they stored their
source code decay too.

3.10	 Dispersion of efforts
The threats identified in this report are not new, and
have been observed and described repeatedly before,
with several initiatives trying to address these issues in a
variety of ways.

Many focus on high quality curation of selected material,
that may be already in, or donated to, a museum, an
archive or a research library.

Others focus on curating metadata for identifying
software, be it in crowdsourced efforts like Wikidata, or in
industry driven efforts to improve software traceability.

Still others look for ways of citing, referencing or
archiving selected portions of the software commons,
most notably scientific software.

Many of the issues faced by all these initiatives are
common: collecting, referencing, citing, describing,
archiving, preserving and making available the source
code of software artifacts.

These issues must be addressed in a coordinated way,
limiting the proliferation of different standards and focusing
on making initiatives interoperable. Avoiding duplication
of efforts would be ideal, but the worse scenario would
be incompatibilities between independent initiatives such
that it is impossible to ever make them work together.
Having five copies of the same catalog to avoid data loss is
a blessing, but having five different incompatible catalogs
means we do not have a catalog at all.

To this end, proper communication should be fostered
among these initiatives and actors, including through
the establishment of an international working group,
following the example of the Software Preservation
Network and the Digital Preservation Coalition, that
have gone to great length to bring together practitioners
from multiple institutions in the broader scope of digital
preservation.

4.	 Stakeholders
Since software is everywhere, there is a broad variety
of stakeholders that have a role to play to address the
threats that software source code faces today. We try to
identify here a few broad classes of actors, their roles,
their stakes, and the actions they can take.

4.1	 Governments / Intergovernmental Organizations
As software users, commissioners and producers
Both governments and the public sector - at local,
national and international levels - are among
the largest software users, commissioners39 and
producers, hence some of their policies have a deep

13Report from the expert group on Software Source Code as Heritage for sustainable development

impact on the software market. The imperatives of
transparency, accountability and efficiency have led
many governments to work together, in the Open
Government Partnership, and to draft policies, like the
«Open Source Contribution Policy», that raise awareness
of the importance of software source code, and recognise
the effort of developers.

As law makers
Governments and supranational bodies are important
stakeholders: they have the power and the responsibility
of formulating international instruments or drafting
and passing laws that may have a great impact on the
future of software source code. For example, software
source code is very different in nature from traditional
copyrighted material, like songs, books, or movies, and
requires that the legal framework for copyright must be
modified to take these specificities under account. Policy
makers should ensure to get adequate information and
counseling about software in order to craft policies that
account for the unique needs of software infrastructure
and that appropriately address the consequences of the
use of software for public decision making.

4.2	 Research and Higher Education
Universities and research bodies are directly concerned
when it comes to research software source code, for
many reasons, including producing software.

Open Science/Open Research and Reproducibility
The stated goal of Open Science is to set the default to
open for research results («as open as possible, as closed
as necessary»). Maximally open source code for research
software would enable science to grow faster, allow today’s
researchers to “stand on the shoulders of giants” by sharing
and extending the software written by those giants, and
would also substantially improve the reproducibility of
computational research across the disciplines.

To reach this goal, every body must play its role. Funders
(private and public) should consider requiring the
research they fund to make the resulting source code

available for reuse under a standard license, and have
it deposited in an archive for the long term. Learned
societies and research governing bodies should elaborate
and encourage code of conducts for researchers that
value the software contributions. Publishers and Open
Access archives should offer services to deposit research
software source code alongside publications.

All these actions should be coordinated, and adopt
standards for long term software source code archival:
we must mutualise what is common, and not waste
resources in a myriad incompatible initiatives.

Software development literacy Producing good software
is not an easy task: it requires proper skills, that must be
disseminated widely among researchers.

The transfer of knowledge and practices in using
legacy digital technologies needs to be supported by the
development of educational courses at all levels, and
the recognition of professional profiles such as digital
historians, that can study how to access source code,
executable software, and documentation over time.

4.3	 Education
In order to avoid another digital divide in the new
generations, it is important to offer a curated and well
documented collection of software (source code) that
shows illustrative examples of software programs,
similarly to the selected books that are offered for
students to read in order to learn to use proficiently their
own language. This teaching material needs to be carefully
selected source code, to illustrate design across a range
of different types of software and enterprises, together
with design notes, algorithms and their implementation as
source code on different software platforms and narratives
of software development, especially collaborative
endeavours. Documentation of design decisions and
decisions regarding selection of implementation
environments would also support educational application.
Furthermore, this teaching material should be made
available to all as Open Educational Resources.

14 Paris Call ‒ Software Source Code as Heritage for Sustainable Development

4.4	 Industry and Commerce
All sectors of modern industry and commerce use and/
or produce software, and the amount of free and open
source software that is reused is booming. There is a clear
common interest in curating the software components that
are openly shared and reused, and in ensuring that they are
properly archived and documented for later reuse.

On the other hand, there seem to be few incentives for
industries to release the source code and documentation
of their own proprietary software once it becomes legacy.
Awareness needs to be raised on the importance of
not losing this legacy, which is a part of the history of
computer science and technology.

Corporate actors also play a key role in lobbying for
aspects of legislation that regulate their business and
set the context for their long-term strategies, which
often implicate non-corporate software sharing and use.
It is thus vitally important that companies refrain from
pursuing policy goals that protect their own interests at
the cost of making it impossible to preserve software for
coming generations.

4.5	 Memory Institutions
Information preservation is the vehicle by which we
capitalize the knowledge that humankind has built
over our history, and advance our understanding of
ourselves and our environment. The emergence of digital
technologies has led to the rise of digital preservation.
Software in general, and software source code in
particular, must be considered an essential component in
this endeavour, and treated as a priority, as the Software
Preservation Network is doing. Memory institutions (such
as galleries, libraries, archives and museums) should
share efforts in identifying and tackling the challenges,
and leverage existing infrastructures for source code
preservation, whenever possible.

From the perspective of software creators, it becomes
important to isolate software code as documentary
heritage, oftentimes digitally born, which deserves to be
preserved. However, in some cases software developers
still write or print out code on paper which, in itself, may
constitute significant heritage as a physical ‘carrier’ of
the memories of software developers. Preserving these
forms of source code is also particularly important
in regions where computers may be inaccessible and
teaching of computer programming occurs in the old
‘analogue’ format of paper documentation.

4.6	 NGOs / Other standards-setting bodies
Many organisations have been working for years or
decades to advocate, professionalise, and disseminate
the principles behind the free and open source software
that constitutes today our software commons. They
have precious expertise to share with all the other
stakeholders, and should be involved in their efforts.

Non-Governmental Organizations involved in the
definition of standards which are most relevant to
software development and preservation should also take
part in these efforts.

4.7	 Individuals
One oft-forgotten set of stakeholders for preservation
and accessibility of software source code are individuals
- citizens and enthusiasts of all types, from software
development to computer history. Given the enormous
amount of source code being produced, individuals play an
important role in saving and documenting source code, in
addition to being a target audience for software heritage
efforts. Efforts to preserve and make software source
code accessible should be open to the public and to the
extent possible, involve members of the communities that
developed the software or are impacted by it.

15Report from the expert group on Software Source Code as Heritage for sustainable development

5.	 Glossary
Archive
An archive is a collection of primary source documents
which are, for a variety of purposes, preserved over time
(see https://en.wikipedia.org/wiki/Archive). In a software
archive we intend to find of course the source code of the
software, but also documentation, and other traces of the
design and development process of software artifacts.

Catalog
By analogy with a library catalog (see https://
en.wikipedia.org/wiki/Library_catalog) we mean here
a register of all the software source codes found in a
repository, a forge or group of them.

Forge, code hosting platform
A platform, usually web-based, for both developing
and sharing software source code, see also https://
en.wikipedia.org/wiki/Forge_(software)

Proprietary software
A software is called “proprietary”, when it is not “open
source” or “free software”; in particular, most proprietary
software keeps its source code behind closed doors, see
also https://en.wikipedia.org/wiki/Proprietary_software

Repository
A storage location in which software artifacts can be
deposited, and from which they can be retrieved.

Source code
Common abbreviation of “software source code”, it refers
to the representation of a computer program that is best
suited for a developer to make modifications to it; usually
this is a (set of) textual document(s) written in a high
level programming language.

Universal, comprehensive
A “comprehensive” catalog strives to cover a range as
broad as possible of items. The attribute “universal”
stresses the ability to address all intended needs,
including interoperability.

https://en.wikipedia.org/wiki/Archive
https://en.wikipedia.org/wiki/Library_catalog
https://en.wikipedia.org/wiki/Library_catalog
https://en.wikipedia.org/wiki/Forge_
https://en.wikipedia.org/wiki/Forge_
https://en.wikipedia.org/wiki/Proprietary_software

16 Paris Call ‒ Software Source Code as Heritage for Sustainable Development

END NOTES

1	 http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E

2	 D. boyd, «It’s Complicated: The Social Lives of Networked Teens», 2015,
Yale University Press

3	 J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl and
G. Wilson, “How do scientists develop and use scientific software?”, 2009
ICSE Workshop on Software Engineering for Computational Science and
Engineering, Vancouver, BC, 2009, pp. 1-8. doi: 10.1109/SECSE.2009.5069155

4	 Even if it is out of the scope of this document, preservation of software
executables is a very valuable objective, and there are many ongoing efforts
to address it.

5	 https://www.gnu.org/licenses/gpl.html#section1

6	 Preface to Abelson, Sussman, and Sussman, “The Structure and
Interpretation of Computer Programs”, MIT Press, 1985.

7	 First page of Donald E. Knuth. 1984. Literate programming. Comput. J. 27,
2 (May 1984), 97-111, http://dx.doi.org/10.1093/comjnl/27.2.97

8	 Shustek, L. J. “What Should We Collect to Preserve the History of Software?”,
IEEE Annals of the History of Computing, 2006.

9	 Nancy Kranich and Jorge Reina Schement. Information commons.
Annual Review of Information Science and Technology, 42(1):546–591, 2008.

10	 See also https://en.wikipedia.org/wiki/Information_commons#Software_commons.

11	 https://en.wikipedia.org/wiki/Free_and_open-source_software

12	 See https://it-cisq.org/wp-content/uploads/2012/09/CISQ_2009_Executive_
Forums_Report.pdf. See also the Reproducible Builds Project, 	
https://reproducible-builds.org/

13	 See the Open Government Declaration, https://www.opengovpartnership.org/
open-government-declaration

14	 Laurence Lessig, “Code is Law: on liberty in cyberspace”, Harvard Magazine,
January 2000, https://harvardmagazine.com/2000/01/code-is-law-html

15	 “When algorithms affect human rights, public values or public decision-
making we need oversight and transparency” Marietje Schaake, MEP

16	 Informatics Europe & ACM Europe Council, “When Computers Decide:
European Recommendations on Machine-Learned Automated Decision
Making”, February 2018. https://dl.acm.org/citation.cfm?id=3185595

17	 For a more detailed outline of principles for accoutanble algorithmic
systems, see http://www.fatml.org/resources/principles-for-accountable-
algorithms.

18	 Weitere Beteiligte (Hrsg. etc.): Alice Allen et al. Engineering Academic
Software (Dagstuhl Perspectives Workshop 16252) doi: 10.4230/
DagMan.6.1.1

19	 R. J. LeVeque, I. M. Mitchell and V. Stodden, “Reproducible research
for scientific computing: Tools and strategies for changing the culture,” in
Computing in Science & Engineering, vol. 14, no. 4, pp. 13-17, 	
July-Aug. 2012. doi: 10.1109/MCSE.2012.38

20	 See “Declaration of Principles”, WSIS-03/GENEVA/DOC/4-E, World 	
Summit on the Information Society, Geneva, December 12, 2003

21	 CS for All: https://www.nsf.gov/news/special_reports/csed/

22	 Informatics for All: https://dl.acm.org/citation.cfm?id=3185594

23	 See the report https://globalyoungacademy.net/wp-content/
uploads/2018/03/18013_GYA_Report_GARS-Web.pdf

24	 https://blog.mozilla.org/netpolicy/2018/09/07/eu-copyright-reform-the-facts/

25	 See https://www.gov.uk/government/publications/national-curriculum-in-
england-computing-programmes-of-study

26	 See https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-
science-all and https://www.axios.com/trump-to-announce-computer-
science-education-initative-1513305746-24c9b0c5-b6e6-4bae-9a85-
425ac65e8f24.html

27	 In the United States, there is documentation that suggests that legal risk
and a “permissions culture” has led to extremely limited collection of
software works. See Patricia Aufderheide, Brandon Butler, Krista Cox, and
Peter Jaszi1, The Copyright Permissions Culture in Software Preservation
and Its Implications for the Cultural Record, https://www.arl.org/storage/
documents/2018.02.09_CopyrightPermissionsCulture.pdf.

28	 See Hidden Figures: The Story of the African American Women Who Helped
Win the Space Race by Margot Lee Shetterly.

29	 See https://www.ushahidi.com/about Last accessed: 06 November 2018

30	 Dr. Lennard Bangens and Bjorn Soderberg, ‘Mobile Banking- Financial
Services for the Unbanked’ (SPIDER: The Swedish Program for ICT in
Developing Regions, 2008 https://spider1.blogs.dsv.su.se/wp-content/blogs.
dir/362/files/2016/11/Spider-ICT4D-Series-2-Mobile-banking-financial-
services-for-the-unbanked.pdf Last accessed: 06 November 2018. See
page 4 for a definition of unbanked

31	 Roberto Di Cosmo, Morane Gruenpeter, Stefano Zacchiroli. Identifiers for
Digital Objects: the Case of Software Source Code Preservation. iPRES 2018
- 15th International Conference on Digital Preservation, Sep 2018, Boston,
United States. pp.1-9, https://hal.archives-ouvertes.fr/hal-0186579

32	 Smith AM, Katz DS, Niemeyer KE, FORCE11 Software Citation Working
Group. (2016) Software citation principles. PeerJ Computer Science 2:e86
https://doi.org/10.7717/peerj-cs.86

33	 Most notably, Gitorious (2015) and Google Code (2015)

34	 Jean-François Abramatic, Roberto Di Cosmo, Stefano Zacchiroli: Building
the universal archive of source code. Commun. ACM 61(10): 29-31 (2018)

35	 See GHTorrent, http://ghtorrent.org/, and GHArchive, https://www.gharchive.org/.

36	 SourceForge research data, https://www3.nd.edu/~oss/Data/data.html.

37	 See for example The Mail Archive https://www.mail-archive.com/, and
the now abandoned Gmane.

38	 Personal interviews of early creators are being recorded at the initiative of
several memory institutions, but we would like to see also recordings of
the actual process used by them to develop their software.

39	 See for example Mariana Mazzucato, “The Entrepreneurial State”, 	
Anthem Press 2013

http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E
https://www.gnu.org/licenses/gpl.html#section1
http://dx.doi.org/10.1093/comjnl/27.2.97
https://en.wikipedia.org/wiki/Information_commons#Software_commons
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://it-cisq.org/wp-content/uploads/2012/09/CISQ_2009_Executive_
https://reproducible-builds.org/
https://www.opengovpartnership.org/
https://harvardmagazine.com/2000/01/code-is-law-html
https://dl.acm.org/citation.cfm?id=3185595
http://www.fatml.org/resources/principles-for-accountable-algorithms.18
http://www.fatml.org/resources/principles-for-accountable-algorithms.18
http://www.fatml.org/resources/principles-for-accountable-algorithms.18
https://www.nsf.gov/news/special_reports/csed/
https://dl.acm.org/citation.cfm?id=3185594
https://globalyoungacademy.net/wp-content/
https://blog.mozilla.org/netpolicy/2018/09/07/eu-copyright-reform-the-facts/
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://www.axios.com/trump-to-announce-computer-science-education-initative-1513305746-24c9b0c5-b6e6-4bae-9a85-425ac65e8f24.html
https://www.axios.com/trump-to-announce-computer-science-education-initative-1513305746-24c9b0c5-b6e6-4bae-9a85-425ac65e8f24.html
https://www.axios.com/trump-to-announce-computer-science-education-initative-1513305746-24c9b0c5-b6e6-4bae-9a85-425ac65e8f24.html
https://www.axios.com/trump-to-announce-computer-science-education-initative-1513305746-24c9b0c5-b6e6-4bae-9a85-425ac65e8f24.html
https://www.arl.org/storage/
https://www.ushahidi.com/about
https://spider1.blogs.dsv.su.se/wp-content/blogs
https://hal.archives-ouvertes.fr/hal-0186579
https://doi.org/10.7717/peerj-cs.86
http://ghtorrent.org/
https://www.gharchive.org/
https://www3.nd.edu/~oss/Data/data.html
https://www.mail-archive.com/

“In memory of Dr Indrajit Banerjee,
former Director of the Knowledge Societies Division,
Communication and Information Sector, UNESCO.”

Memory of
the World

United Nations
Educational, Scientific and

Cultural Organization

More information

https://en.unesco.org/themes/building-knowledge-societies

softwareheritage_info@unesco.org

Part of our Heritage , Pillar
of our Present, Enabler

of our Future.

https://en.unesco.org/themes/building-knowledge-societies
mailto:softwareheritage_info@unesco.org

	Table of Contents

