
Memory of
the World

United Nations
Educational, Scientific and

Cultural Organization

THE GREAT LIBRARY OF SOURCE CODE

The Software
Heritage

Acquisition
Process

2

T
h

e

S
o

f
t

w
a

r
e

H

e
r

i
t

a
g

e

A
c

q
u

i
s

i
t

i
o

n

P
r

o
c

e
s

s

TABLE OF
CONTENTS

Foreword 3

Introduction 5

The process, abstract view 6
Phases 6

An iterative process 7

Resources needed by the process 8

Implementation requirements 9

The acquisition process, a concrete view 9
General Motivation for using Git and GitHub 10

SWHAP - GitHub correspondence 10

Process overview 10

The SWHAP template 12

The process, step by step 12

Iteration 14

Appendix A • Tools that can help 14

Acknowledgments 15

Bibliography 15

The designations employed and the presentation
of material throughout this publication do not
imply the expression of any opinion whatsoever
on the part of UNESCO concerning the legal
status of any country, territory, city or area or of
its authorities, or concerning the delimitation of
its frontiers or boundaries.

The ideas and opinions expressed in this
publication are those of the authors; they are
not necessarily those of UNESCO and do not
commit the Organization.

License: IGO CC-BY 4.0

Laura Bussi
Dept. of Computer Science, University of Pisa
l.bussi1@studenti.unipi.it

Roberto Di Cosmo
Software Heritage, Inria and University of Paris
roberto@dicosmo.org

Carlo Montangero
Dept. of Computer Science, University of Pisa
carlo@montangero.eu

Guido Scatena
Dept. of Computer Science, University of Pisa
guido.scatena@unipi.it

Project institutional contacts

University of Pisa:
Chiara Bodei, Fabio Gadducci

UNESCO:
Davide Storti

Inria/Software Heritage:
Roberto Di Cosmo

CLD 1658.19 CI-2019/WS/8

mailto:l.bussi1@studenti.unipi.it
mailto:roberto@dicosmo.org
mailto:carlo@montangero.eu
mailto:guido.scatena@unipi.it

3

T
h

e

S
o

f
t

w
a

r
e

H

e
r

i
t

a
g

e

A
c

q
u

i
s

i
t

i
o

n

P
r

o
c

e
s

sFOREWORD

Moez Chakchouk,
Assistant Director-General for Communication and Information, UNESCO

Documentary heritage comprises analogue
documents or digital informational content of
“significant and enduring value to a community,
a culture, a country or to humanity generally, and
whose deterioration or loss would be a harmful
impoverishment. Significance of this heritage may
become clear only with the passage of time”, states
the UNESCO Recommendation concerning the
Preservation of, and Access to Documentary Heritage,
including in Digital Form (UNESCO, 2015).

Following the opening of the world’s first global
archive of software source code in 2018, the Paris Call
on Software Source Code as Heritage for Sustainable
Development (UNESCO, 2019) has established a firm
basis for the recognition of software source code as
a receptacle and expression of part of our common

knowledge. Preservation of documentary heritage,
however, is an ongoing process requiring clear and
agreed upon techniques, treatments and procedures,
making the knowledge embodied in software source
code accessible and reusable. In this respect, the
Software Heritage Acquisition Process represents
a unique contribution by the University of Pisa and,
with Inria, a remarkable example of international
cooperation as envisioned by the signatories of the
Paris Call.

In this spirit, UNESCO encourages software
developers, memory institutions, the business sector,
academia and civil society as a whole to support these
efforts, fostering international cooperation to build
a common framework for software preservation and
access.

Paolo Mancarella,
Rector, University of Pisa, Italy

The software is everywhere; it is the framer of our
present. It is part of our cultural heritage, although
not perceived as such because we take it for granted
as the land on which we stand. Despite its power,
however, the software is a fragile tool, doomed to
disappear, unless saved and adequately preserved.
This is why, the University of Pisa is pleased and
honoured to support the Software Heritage Project,
proposed by Inria in partnership with UNESCO.

Becoming part of the project network and giving
our contribution is a constructive way to celebrate
the history of information technology and the role
our University played, as we are celebrating the
anniversary of the first degree in Computer Science in
Italy, launched fifty years ago, here in Pisa.

However, our link with information technologies
goes back much further, as during the fifties our

University was responsible for the construction of the
first scientific mainframe designed in our country.
We, therefore, believe that joining this project is a
duty, rather than only a pleasure: it is necessary to
preserve the historical software built during the past
half-century.

Moreover, it is significant that the first important
step in this collaboration is the development of
the Software Heritage Acquisition Process: a tool
and a methodology created to collect and preserve
the software of historical, scientific and cultural
relevance. The preserved materials are intended
to become a real roadmap for current and future
information technology historians, thus enabling us to
leave the doors wide open to the virtual worlds of our
present.

4

T
h

e

S
o

f
t

w
a

r
e

H

e
r

i
t

a
g

e

A
c

q
u

i
s

i
t

i
o

n

P
r

o
c

e
s

s

Bruno Sportisse,
CEO, Inria, France

For 50 years Inria has been at the forefront of
research and innovation in the digital sciences that
were at the origin of the digital revolution. Software
has played a central role in the work of Inria’s
researchers which have produced over the past
decades several thousand software packages, some
of which have led to major scientific breakthroughs
and others that formed the basis of successful
commercial products in one of the many Inria
spin-offs. At the heart of software, there is the
source code, a special form of knowledge that is
both readable by humans, who write and evolve it,
and directly translatable into a form executable by a
machine.

We believe that the source code of the software
developed since the beginning of the computing era,

a little more than half a century ago, constitutes a
precious cultural heritage: it is important to collect it,
preserve it and make it available to everyone. That’s
why Inria initiated Software Heritage, in partnership
with UNESCO, and is fully committed to foster the
emergence of an international network of entities that
share this vision.

Today we are delighted to see one more step forward,
with the publication of the Software Heritage Acquisition
Process developed together with the University of Pisa:
it is an important contribution to the ongoing efforts
and provides detailed guidelines for those that want to
embark in the exciting journey of rescuing, curating and
archiving landmark legacy source code.

Roberto Di Cosmo,
CEO, Software Heritage

Software is at the heart of our digital society and
embodies a growing part of our scientific, technical
and organisational knowledge. The core mission of
Software Heritage is to collect, organise and preserve
the source code of all this software, which constitutes
a precious part of our own cultural heritage, and pass
it over to future generations.

We do this for multiple reasons. To preserve the
knowledge embedded in software source code.
To allow better software development and reuse
for society and industry. To foster better science,
building the infrastructure for preserving, sharing and
referencing research software, a stepping stone for
reproducibility, and a necessary complement to Open
Access.

We do this now, because we are at a turning point:
most pioneers of the digital age are still around, and
willing to contribute their knowledge, but only for a
limited time. They are spread all around the world,
and the amount of knowledge at risk of being lost is
huge, so we’ll only succeed if a broad international
community steps up to tackle this noble task.

The Software Heritage Acquisition Process described
in this document is the result of long months of
intense work in collaboration with the University
of Pisa, with the goal of jumpstarting this effort
by empowering all those that are interested to
contribute. It provides concrete, actionable guidelines
for properly rescuing and curating legacy landmark
source code. We hope to see it broadly adopted, for
the benefit of society as a whole.

5

T
h

e

S
o

f
t

w
a

r
e

H

e
r

i
t

a
g

e

A
c

q
u

i
s

i
t

i
o

n

P
r

o
c

e
s

sINTRODUCTION

Software is everywhere, binding our personal and
social lives, embodying a vast part of the technological
knowledge that powers our industry, supports modern
research, mediates access to digital content and fuels
innovation. In a word, a rapidly increasing part of our
collective knowledge is embodied in, or depends on
software artifacts.

Software does not come out of the blue: it is written
by humans, in the form of software Source Code, a
precious, unique form of knowledge that, besides
being readily translated into machine-executable
form, should also “be written for humans to read”
[1], and “provides a view into the mind of the
designer” [2].

As stated in the Paris Call on Software Source code
as Heritage for sustainable development [3], from the
UNESCO-Inria expert group meeting, it is essential
to preserve this precious technical, scientific and
cultural heritage over the long term.

Software Heritage is a non-profit, multi-stakeholder
initiative, launched by Inria in partnership with
UNESCO, that has taken over this challenge. Its
stated mission is to collect, preserve, and make
readily accessible all the software source code ever
written, in the Software Heritage Archive. To this end,
Software Heritage designed specific strategies to
collect software according to its nature [4].

For software that is easily accessible online, and that
can be copied without specific legal authorizations,
the approach is based on automation. This way, as
of September 2019, Software Heritage has already
archived more than 6 billion unique source code files
from over 90 million different origins, focusing in
priority on popular software development platforms
like GitHub and GitLab and rescuing software source
code from legacy platforms, such as Google Code
and Gitorious that once hosted more than 1.5 million
projects.

For source code that is not easily accessible online,
a different approach is needed. It is necessary to
cope with the variety of physical media where the
source code may be stored, the multiple copies and
versions that may be available, the potential input
of the authors that are still alive, and the existence
of ancillary materials like documentation, articles,
books, technical reports, email exchanges. Such
an approach shall be based on a focused search,
involving a significant amount of human intervention,
as demonstrated by the pioneering works
reconstructing the history of Unix [5] and the source
code of the Apollo Guidance Computer [6].

This document presents the first version of SWHAP,
the SoftWare Heritage Acquisition Process to rescue,
curate and illustrate landmark legacy software source
code, a joint initiative of Software Heritage and the
University of Pisa, in collaboration with UNESCO.

The next section provides an abstract view of SWHAP,
its steps, documents and resources. No specific
assumptions on the tools, platforms and technologies
that may be used to enact it are made, but some
requirements are made explicit.

The last section describes how the abstract
process is implemented at the University of Pisa by
leveraging the Git toolset and the GitHub collaborative
development platform. This implementation is named
SWHAPPE (SWH Acquisition Process Pisa Enactor) in
this document.

Resources available at https://www.softwareheritage.
org/swhap complement this document. This includes
an annotated example, using a real world medium-
sized software project [7], as well as a list of tools that
may be helpful for other landmark legacy software
source code rescue teams.

Revised versions of this document will be published
as needed.

 www.softwareheritage.org/swhap

https://www.zotero.org/google-docs/?D1fWSV
https://www.zotero.org/google-docs/?FKl8rZ
https://www.zotero.org/google-docs/?G5w9mv
https://www.zotero.org/google-docs/?t96cvU
https://www.zotero.org/google-docs/?6rgDgO
https://www.zotero.org/google-docs/?gXUwvR
https://www.softwareheritage.org/swhap
https://www.softwareheritage.org/swhap
https://www.zotero.org/google-docs/?wXnfzI
http://www.softwareheritage.org/swhap

6

T
h

e

S
o

f
t

w
a

r
e

H

e
r

i
t

a
g

e

A
c

q
u

i
s

i
t

i
o

n

P
r

o
c

e
s

s

THE PROCESS, ABSTRACT VIEW

1 This is a complex issue, that may need to be handled according to country-specific regulations and is out of the scope of the present
document. In the United States, one may leverage the “fair use” doctrine, see for example the detailed analysis presented in https://www.
softwarepreservationnetwork.org/bp-fair-use/

This section describes SWHAP, the
acquisition process for software artifacts
at an abstract level, that is, without
making specific assumptions on the
tools, platforms and technologies that
may be used to perform the various
operations described here.

Phases
The activities involved in the acquisition process can
be organized in the following four phases, of which
the first one is conservative, i.e., it is devoted to save
the raw materials that the other phases will build
upon. Figure 1 provides a pictorial view of the process,
its phases, data stores and roles.

Collect

The purpose of this phase is to find the source code
and related materials and gather it as is in a physical
and/or logical place where it can be properly archived
for later processing.

Various strategies are possible for collecting the
raw materials: a dedicated team may proactively
search for the artifact of specific software that
has been identified as relevant (pull approach), or
a crowdsourcing process may be set up to allow
interested parties to submit software that has not
been previously identified (push approach).

Source code can be provided in a digital or physical
form. Typically, source code for old machines (such
as the CEP, the first Italian computer) is available
only as paper printouts that may even include hand-
written comments: all these materials deserve to be
preserved.

Related materials can include research articles,
pictures, drawings, and user manuals: all of these are
part of the software history and need to be preserved
as well as the source code.

At this stage of elaboration of the process, this
phase is better thought of as abstract, in the sense
that several, more focussed descriptions should be
provided to cater for the different situations identified.
The same applies to the Curator role, which may need
different capabilities in different scenarios.

Curate

The purpose of this phase is to analyze, cleanup and
structure the raw material that has been collected.

Preparing software source code for archival in
Software Heritage requires special care: the source
code needs to be cleaned up, different versions with
their production dates need to be ascertained, and the
contributors need to be identified in order to build a
faithful history of the evolution of the software over
time.

Also, proper metadata should be created and made
available alongside the source code, providing all the
key information about the software that is discovered
during the curation phase. We recommend using the
vocabulary provided by CodeMeta as an extension
to schema.org (see https://codemeta.github.io/
terms/); this includes the software runtime platform,
programming languages, authors, license, etc.

Particular care is required to identify the owners of the
different artifacts, and obtain if needed the necessary
authorizations to make these artifacts publicly
available1.

Archive

The purpose of this phase is to contribute the curated
materials to the infrastructures specialized for each
kind of materials: Software Heritage for the source
code, Wikimedia for images or videos, open access
repositories for research articles, Wikidata for software
descriptions and properties, and so on.

Well established guidelines are available for
contributing materials to Wikimedia (see https://
commons.wikimedia.org/wiki/Commons:First_steps/
Contributing) and Wikidata (see https://www.wikidata.
org/wiki/Wikidata:Data_donation), hence we will
focus primarily on curating and contributing the
software source code to Software Heritage, a process
that is new and may require rather technical steps.

https://www.softwarepreservationnetwork.org/bp-fair-use/
https://www.softwarepreservationnetwork.org/bp-fair-use/
https://codemeta.github.io/terms/
https://codemeta.github.io/terms/
https://commons.wikimedia.org/wiki/Commons:First_steps/Contributing
https://commons.wikimedia.org/wiki/Commons:First_steps/Contributing
https://commons.wikimedia.org/wiki/Commons:First_steps/Contributing
https://www.wikidata.org/wiki/Wikidata:Data_donation
https://www.wikidata.org/wiki/Wikidata:Data_donation

7

T
h

e

S
o

f
t

w
a

r
e

H

e
r

i
t

a
g

e

A
c

q
u

i
s

i
t

i
o

n

P
r

o
c

e
s

s

Present

The purpose of this phase is to create dedicated
presentations of the curated materials.

Once the curated materials are made available in the
dedicated infrastructures, it is possible to use it to
create presentations for a variety of purposes: special
events, virtual or physical expositions for museums or
websites.

For this, the archived materials need to be referenced
using the identifiers that each platform provides for
its contents. Software Heritage provides intrinsic
persistent identifiers that are fully documented at
https://docs.softwareheritage.org/devel/swh-model/
persistent-identifiers.html

The presentation phase is out of the scope of this
document, and as such we are currently not providing
a supporting implementation. Anyway, a good example
of what can be done is the https://sciencestories.io
website.

An iterative process
New information may arise at any time: new raw
materials may be discovered, refined information may
be identified that needs to be added to the curation,
and mistakes may need to be corrected. Hence, the
overall process must be seen as iterative, in the sense
that, when new data are available, the pertinent phase
can be re-entered and the process enacted once more
from there to update all the relevant information. This
suggests that, whenever possible, the data stores
should be fully versionable, not to loose historical
information about the acquisition process itself.

Figure 1. Source code acquisition process.

AcqNotice

Curate

Journal/Catalogue

CuratedSC

PresentedSC

Journal/Catalogue

[Present]

DepositedSC
Collect

Journal/Catalogue

ArchivedSC
Archive

Journal/Catalogue

Depository

SWH

Curated
Source Code

Deposit

Wikies

Collector
Deposit

Engineer Curator
Archive

Engineer
Presentation

Designer
[Web

Designer]

[Warehouse]

Process phase

Output
product

Input
product

Role needed in the
phase below

Shared
data

store...

…fed in the
phase above

…used in the
phase above

Key

Entities in italic are abstract; square brackets denote optional elements.

https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://sciencestories.io

8

T
h

e

S
o

f
t

w
a

r
e

H

e
r

i
t

a
g

e

A
c

q
u

i
s

i
t

i
o

n

P
r

o
c

e
s

s

Resources needed by
the process
As any process supported digitally, SWHAP needs
both human and technical resources to be enacted.

First of all, several data stores and working areas are
needed, to save and make public the intermediate
products, which are themselves of value, as already
mentioned, and to pass the collected information
across the phases. These are shown in the lower part
of Figure 1, and are summarized here.

Warehouse

A physical location where physical raw materials are
safely archived and stored, with the usual acquisition
process2.

Depository

A virtual space where digital raw materials are safely
archived. The raw digital materials found in the
Depository are used in the Curation phase to produce
the source code that Software Heritage can ingest in
the Archive phase.

The Depository holds also the related raw materials
that may be elaborated and deposited in locations like
WikiData, WikiMedia, etc. – referred to as Wikies in
fig. 1 – in the other phases.

Workbench

Any implementation of the process will need a virtual
space and working environment where the activities
can be carried out, with support for temporary
storage and for logging the various operations in a
journal.

Curated source code deposit

A fully versioned repository, holding the reconstructed
development history of the source code, in view of its
transfer to Software Heritage.

Catalogues and journals

As shown in fig. 1, according to the best practices of
the archival sciences, each phase shall produce both
a Catalogue of its products and a Journal recording its
activities - who did what, and when. A list of the Actors
involved in the process is also necessary. Provision to
store all these information safely has to be foreseen
in any supporting implementation.

2 See for example https://collectionstrust.org.uk/spectrum/.

With respect to the human resources, several roles
are needed to enact the process, as indicated in the
top part of fig. 1. Here is a short summary of the
involved capabilities.

Collector

Searches and receives the raw materials. Identifies,
classifies and separates source code and ancillary
materials.

Deposit engineer

Masters the procedures to archive physical and digital
materials, in the local context.

Curator

Prepares the version history, identifying the authors
and other contributors. Provides a context to the
source code, choosing among the ancillary materials.

Archive engineer

Masters the procedures to transfer the curated source
code to SWH and to publish the context in the Wikies.

Presentation designer and Web engineer

These are out of the scope of this document, and
are mentioned only to note that, though most of the
presentations of the archived software will be on line,
the abilities to design the contents of a presentation
should be considered separately from the technical
ones.

Remark the technical resources described above
in abstract terms, may be implemented in a variety
of ways. For example, one can imagine a single
Depository for all the software projects that are
collected, but it is also possible to use a separate
Depository for each software project, and the same
holds for all the other areas.

Remark the roles indicated above need not
necessarily be played by different persons, e.g.,
Collector and Curator may be the same person,
nor be played by a unique person, e.g., there can
be several cooperating Curators, in case of large
systems.

https://collectionstrust.org.uk/spectrum/

9

T
h

e

S
o

f
t

w
a

r
e

H

e
r

i
t

a
g

e

A
c

q
u

i
s

i
t

i
o

n

P
r

o
c

e
s

s

Implementation
requirements
The abstract process may be implemented using
different tools, platforms and technologies, as long as
the following key requirements are satisfied.

Long term availability

The places where the artefact (both raw and curated)
are stored must provide sufficient guarantees of
availability over the long term. These places may be
physical (warehouses), or logical (depositories).

Historical accuracy

Any supporting implementation should support the
faithful recording of the authorship of the source code
as well as of the reconstruction process, e.g., via a
flexible versioning system.

3 See for example in https://collectionstrust.org.uk/spectrum/.

Traceability

It must be possible to trace the origin of each of the
artifacts that are collected, curated and deposited. For
physical materials, we refer to common practice3. For
digital artifacts, it is recommended to keep a journal of
all the operations that are performed, and to automate
them as much as possible, as the collection and
curation process may require several iterations.

Openness

Any supporting implementation should be based on
open and free tools and standards.

Interoperability

Any supporting implementation should provide
support for the cooperation and coordination of the
many actors playing the many roles of the acquisition
process.

THE ACQUISITION PROCESS,
A CONCRETE VIEW

In order to implement SWHAP, the first step
is to decide how to instantiate the needed
storage and working areas: Warehouse,
Depository, Curated source code deposit
and Workbench.
The Warehouse is quite similar to the usual storage
area where museums preserve their collections; it
will need to be set up in a specific physical location,
following the well-established process for museums,
so we will not cover it in this guide.

The other areas, which are virtual spaces, can very
well be set up using distinct digital platforms, but it
is also possible to instantiate all of them on a single
platform.

This choice was made for the SWHAP Pisa Enactor
(SWHAPPE), the implementation adopted by the
SWHAP@Pisa project: SWHAPPE exploits the
collaborative platform GitHub (https://github.com/)
as a host platform for all the virtual support areas of
the process.

The solutions adopted in SWHAPPE are described in
detail in this section, together with their rationale.

https://collectionstrust.org.uk/spectrum/
https://github.com/
https://github.com/
https://github.com/

10

T
h

e

S
o

f
t

w
a

r
e

H

e
r

i
t

a
g

e

A
c

q
u

i
s

i
t

i
o

n

P
r

o
c

e
s

s

General Motivation for
using Git and GitHub
The choice of Git as the designated tool for traceability
and historical accuracy, and of GitHub as the unifying
platform to support the SWHAP process proceeds
from several considerations that we review below.

First of all we discuss the choice of Git. One of the
key requirements set forth for SWHAP is the need to
ensure full traceability of the operations performed
on the recovered digital assets. This means that
each of the virtual places must provide means to
record the history of the modifications made to the
digital assets, with information on who did what
and when. It is very convenient to use the same tool
in all of the virtual places of the process, as this
reduces the learning effort and streamlines the
process. All modern version control systems provide
the needed functionality, and we have chosen Git
as our standard tool, as it is open source (another
of our requirements) and broadly adopted. Git is
a powerful tool, and requires some expertise to
make the most out of it. However, a large part of the
process is scriptable, and this will hide the underlying
complexity to the final user, which can then focus on
the main issue: curating and preserving the code and
its history.

Another important motivation for our choice of
Git is the ability to support historical accuracy, i.e.,
providing a faithful view of the history of both the
recovered source code and the acquisition process, as
prescribed by the SWHAP key requirements. This is
properly accommodated by the commit and versioning
mechanisms offered by Git, which allow separating
authors from committers: this way on can record both
the story of the original software and the story of its
curation.

Finally, we had to choose one of the many online
platforms that allow to collaborate using Git. GitHub,
GitLab.com and Bitbucket are the most known ones
and are all regularly archived in Software Heritage,
so that long term availability of their contents is
preserved, no matter which one of these platforms is
chosen.

Among all these platforms, GitHub is by far the most
popular and active, and is also the platform adopted
by the University of Pisa, so it was a natural choice,
and we believe this will make the learning curve
gentler for most SWHAP adopters.

In the following, we provide detailed guidelines to
instantiate the process using Git on GitHub. We
think that most of what is described in the guide

can be easily adapted to any of the other Git-based
collaborative platforms.

SWHAP - GitHub
correspondence
SWHAPPE is a straightforward implementation of the
abstract process, which concretizes the (logical) areas
described above by means of repositories in GitHub:
there are three repositories for each source code
acquisition, one for each area of the abstract process:

Workbench repository, to implement the Workbench,
i.e. a working area where one can temporarily collect
the materials and then proceed to curate the code;

Depository repository, to implement the Depository,
where we can collect and keep separated the raw
materials from the curated source code;

Source Code repository, to implement the Curated
source code deposit, where we store the version
history of the code; this version history is usually
“synthetic”, rebuilt by the curation team, for old
projects that did not use a version control system.

Let’s remark that SWHAPPE has different Workbench
and Depository repositories for each code acquisition,
but it would also be possible to use a single
Workbench repository and/or a single Depository
repository to work on all the collected software,
provided one maintains a well-organised directory
structure which keeps the codes separated. On the
other hand, we need a Source Code repository for
each software project, to be actually ingested in the
Software Heritage archive.

Process overview
GitHub features template repositories that can be
instantiated whenever needed (see https://help.
github.com/en/articles/creating-a-template-
repository). We used this feature in SWHAPPE, and
designed a repository, SWHAP-TEMPLATE, that
embodies the core support to enact the process. Its
structure and use is shown in figure 2. In the picture
and in the following SWName is a variable that takes
the name of the acquired code as its value at each
instantiation.

Once SWHAP-TEMPLATE has been instantiated, the
SWName-Workbench repository so created need to be

https://help.github.com/en/articles/creating-a-template-repository
https://help.github.com/en/articles/creating-a-template-repository
https://help.github.com/en/articles/creating-a-template-repository

11

T
h

e

S
o

f
t

w
a

r
e

H

e
r

i
t

a
g

e

A
c

q
u

i
s

i
t

i
o

n

P
r

o
c

e
s

s

cloned to the user’s machine, so that he can work on
the collected files locally - the Git clone mechanism
ensures that these changes can be safely moved to
the original repository, for publication and sharing
with other actors in the acquisition.

We create two dedicated branches4, that allow to
track separately the operations that will be later
moved to the Depository and the Development History

4 For more information on branches, see https://help.github.com/en/articles/github-glossary

Deposit: Depository, to contain the raw materials and
the browsable sources as well as the metadata, and
SourceCode to organize the source code in view of
the reconstruction of its development history. Finally,
the Depository and SourceCode branches become two
repositories: the latter is shipped to the Software
Heritage archive, the former is published by the
organization promoting the acquisition.

Figure 2. Overview of the SWHAPPE process.

SWHAP-TEMPLATE

raw_materials
browsable_source
metadata
source
README.md

SWName-Workbench

raw_materials
browsable_source
metadata
source
README.md

instance
repository

SWName-Workbench (local)

SWName-Depository (branch)

SWName-Depository

raw_materials
metadata
browsable_source
README.md

clone

branch

to git repository

SWName-SourceCode (branch)

branch

to git repository

SWName-SourceCode

source
metadata
README.md

https://help.github.com/en/articles/github-glossary

12

T
h

e

S
o

f
t

w
a

r
e

H

e
r

i
t

a
g

e

A
c

q
u

i
s

i
t

i
o

n

P
r

o
c

e
s

s

The SWHAP template
The structure of the template is shown in fig. 3.

First of all, we can see a correspondence between
the Depository presented in the process and the area
provided by raw_materials and browsable_
source: indeed, these two folders will be moved in
order to instantiate the Depository, once they have
been loaded, the former with the original materials,
just as they have been found or submitted, the
latter with a first revision of the source code, made
accessible through the GitHub web interface, e.g.,

5 See the documentation on https://help.github.com/en/articles/creating-a-repository-from-a-template

6 See the documentation on https://help.github.com/en/articles/cloning-a-repository

7 See the documentation on https://help.github.com/en/articles/adding-a-file-to-a-repository-using-the-command-line.

archives should be decompressed, code transcribed
from pictures, etc.

The source folder is provided as the starting point for
the creation of the Source Code Git repository, in the
curation phase. The curator has to recognize each major
version of the code, and refactor it accordingly - one
separate folder per each version. To create the Source
Code Deposit, however, we exploit the commit and
versioning mechanisms of Git: more on this later on.

As for the metadata folder, here we record all the
information about the software and the acquisition
process (catalogue, actors, journal, etc.). The
guidelines to fill this part are given in the template
itself.

Figure 3. Top structure of the Template repository.

The process,
step by step

Instantiation

The first step is to create an instance of the SWHAP-
TEMPLATE5, that should be named SWName-
Workbench, and then to clone it to obtain a local copy
on your machine6.

From this point on, you’ll be able to upload files
and to modify/copy/move them locally, and use Git
commands to push changes to GitHub.

Let us now see the steps to be followed, together with
some explanations.

Collect phase

Upload files in raw_materials

All the collected files must be uploaded in the raw_
materials folder.

If there are physical materials, folder raw_
materials should contain a reference to the related
Warehouse, that may follow the Spectrum guidelines
[8].

Move the source code to browsable_source

All the source code files must then be put into the
browsable_source folder.

If the raw material is an archive, you should unpack
it locally and then upload the result on GitHub by
performing a push7.

https://help.github.com/en/articles/creating-a-repository-from-a-template
https://help.github.com/en/articles/cloning-a-repository
https://help.github.com/en/articles/adding-a-file-to-a-repository-using-the-command-line
https://www.zotero.org/google-docs/?ZoDYLj

13

T
h

e

S
o

f
t

w
a

r
e

H

e
r

i
t

a
g

e

A
c

q
u

i
s

i
t

i
o

n

P
r

o
c

e
s

sIf the code was only available in non-digital form (e.g.
printed listings), you can either transcribe it manually,
or use a scanner and an OCR (optical character
recognition) tool to parse it. See Appendix A for a list
of suggested tools.

Particular care should be used to ensure the files in
browsable_source have the correct extension:
scanner and OCR usually generate files with a
generic .txt extension that must be changed to
the extension typically used for the programming
language they contain.

Note that, at this stage, we are not interested
in precise information about the versions of the
software. The purpose is to have machine-readable
documents.

Finally, in preparation for the curation phase, you may
want to copy the files in browsable_source to the
source folder.

Create Depository

The next step is to create the branch Depository,
containing only the folders raw_materials and

browsable_source, together with the metadata
updated to this point. Then, create the Depository
repository from this branch.

Curate phase

Curate the source code

Once the Depository creation is complete, you can
move back to the source folder in the master branch.
Here you have to divide and number the versions,
putting the files of each one in a dedicated folder and
determining who did what and when.

In practice, this means that for each version of the
software you need to ascertain:

 ¼ the main contributing author,

 ¼ the exact date of the release of this particular
version

This information should be consigned in a dedicated
metadata file, version_history.csv, having the
fields described in Figure 4.

Figure 4. Fields of the version_history.csv file

directory name name of the directory containing the source code of this version

author name name of the main author

author email email of the main author, when available

date original original date when this version was made

curator name name of the curator person or team

curator email the reference email of the acquisition process

release tag a tag name if the directory contains a release, empty otherwise

commit message text containing a brief note from the curation team

(Re-)Create the Development History

Now we are ready to (re-)create the development
history of the software. First you need to create a
branch Source Code, with the src folder.

Then, you can proceed in two ways:

 ¼ manually: using the Git commands to push the
successive versions into the source folder,
reading the information collected in the file
version_history.csv to set the fields for
each version to the values determined during the
curation phase;

 ¼ automatically: using a tool that reads the
information from version_history.csv and
produces the synthetic history in a single run; one
such tool has been developed, DT2SG (https://

github.com/Unipisa/DT2SG) , and you can see a
running example in the full document available at
www.softwareheritage.org/swhap.

The result will be a branch that materializes the
development history of the software via Git commits
and releases.

Create the final repository

Finally you can create the “official” software
repository, taking the versions history from the src
branch and the metadata from the master branch.

http://www.corestandards.org/assets/Appendix_A.pdf
https://github.com/Unipisa/DT2SG
https://github.com/Unipisa/DT2SG
http://www.softwareheritage.org/swhap

14

T
h

e

S
o

f
t

w
a

r
e

H

e
r

i
t

a
g

e

A
c

q
u

i
s

i
t

i
o

n

P
r

o
c

e
s

s

Iteration
New material may be discovered after the process has
been completed, triggering an iteration of some of the
phases described above. In this case, we recommend
proceeding as follows:

 ¼ if new raw material (non-source code) is found,
we have to clone the Depository repository and
add new items to it. In this way, the performed
commits will correctly follow the previous ones.

 ¼ if new source code is found, after we collected it in
the Depository, we have the following cases:

(1) The recovered source code is related to a
version, which is already included in the
software history.

(2) The source code represents a completely new
version, with respect to the sw history as it was
previously collected.

We are not finished yet, since in both cases the
SourceCode repository is no longer consistent with
the collected source code, and we have to recreate it,
performing the following steps:

 ¼ Delete the SourceCode repository.

 ¼ Move back to the Workbench and according to the
current case:

if (1), add the source code to the correct version.

if (2), add the new version folder with the related
metadata.

 ¼ Recreate the software history as for the first
iteration.

APPENDIX A • TOOLS THAT CAN HELP

Here is a list of tools for code acquisition and curation
that have been used during the initial experimentation
of SWHAPPE:

Used/suggested OCR:

 ¼ Tesseract (https://github.com/tesseract-ocr/). It
can be installed and used from command line. An
API is also provided to use the OCR in a script.

 ¼ OCR.space (https://ocr.space/). Online OCR and
free API.

Dedicated scripts:

 ¼ DT2SG-Directory Tree 2 Synthetic Git (https://
github.com/Unipisa/SWHAP-DT2SG). Creates the
synthetic history of the software.

 ¼ SWHAP-EXAMPLE (https://github.com/Unipisa/
SWHAP-EXAMPLE)

Many other tools exist, and are currently under
construction and will be loaded on the SWHAPPE
repository on GitHub.

https://github.com/tesseract-ocr/
https://ocr.space/
https://github.com/Unipisa/SWHAP-DT2SG
https://github.com/Unipisa/SWHAP-DT2SG
https://github.com/Unipisa/SWHAP-EXAMPLE
https://github.com/Unipisa/SWHAP-EXAMPLE
https://github.com/tesseract-ocr/
https://ocr.space/

15

T
h

e

S
o

f
t

w
a

r
e

H

e
r

i
t

a
g

e

A
c

q
u

i
s

i
t

i
o

n

P
r

o
c

e
s

sACKNOWLEDGMENTS

L. Bussi wants to acknowledge the Software Heritage Foundation for the scholarship that supported her work and
the Department of Computer Science of the University of Pisa for hosting her while working on SWHAPPE.

BIBLIOGRAPHY

[1] H. Abelson and G. J. S. with J. Sussman, Structure
and Interpretation of Computer Programs. The
MIT Press: The MIT Press, 1985.

[2] L. J. Shustek, “What Should We Collect to
Preserve the History of Software?,” IEEE Ann. Hist.
Comput., vol. 28, no. 4, pp. 110–112, 2006.

[3] Institut national de recherche en informatique
et en automatique, Paris Call: Software Source
Code as Heritage for Sustainable Development.
UNESCO, 2019.

[4] J.-F. Abramatic, R. Di Cosmo, and S. Zacchiroli,
“Building the Universal Archive of Source
Code,” Commun ACM, vol. 61, no. 10, pp. 29–31,
Sep. 2018.

[5] D. Spinellis, “A repository of Unix history and
evolution,” Empir. Softw. Eng., vol. 22, no. 3, pp.
1372–1404, 2017.

[6] R. Burkey, “Virtual AGC - Changelog,” 2019.
[Online]. Available: http://ibiblio.org/apollo/
changes.html. [Accessed: 24-Sep-2019].

[7] G. Attardi and T. Flagella, “Memory Management
in the PoSSo Solver,” J Symb Comput, vol. 21, no.
3, pp. 293–311, 1996.

[8] T. Collections, “Introduction to Spectrum 5.0.”
[Online]. Available: https://collectionstrust.org.uk/
spectrum/spectrum-5/. [Accessed: 24-Sep-2019].

https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c
https://www.zotero.org/google-docs/?hIHI4c

The Software
Heritage
Acquisition
Process

“Software is the fruit of a precious
human artifact, the source code. Since
our activities are more and more
software-based, the code not only
embeds the computational thought of
its designer but it also has a lot to tell
on our lives and our times. It is clearly
part of our cultural heritage and it is
essential to preserve it.”

Memory of
the World

United Nations
Educational, Scientific and

Cultural Organization

